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Abstract. This paper proposes cognitive developmental robotics as a new principle for the design
of humanoid robots. This principle may provide ways of understanding human beings that go

beyond the current level of explanation found in the natural and social sciences. Furthermore,

a methodological emphasis on humanoid robots in the design of arti�cial creatures holds promise
because they have many degrees of freedom and sense modalities and, thus, must face the challenges

of scalability that are often side stepped in simpler domains. We examine the potential of this new

principle as well as issues that are likely to be important to CDR in the future.

1 Introduction

Robot heroes and heroines in science �ction movies and cartoons like Star Wars in the US and Astor

Boy in Japan have attracted us so much, which as a result has motivated many robotics researchers.

These robots, unlike special purpose machines, are able to communicate with us and perform a variety

of complex tasks in the real world. What do present-day robots lack that prevents them from realizing

these abilities?We advocate a need for cognitive developmental robotics (CDR), which aims to understand

the cognitive developmental processes that an intelligent robot would require and how to realize them in

a physical entity. However, cognitive developmental robotics has just started, and its de�nition, design

principle, and methodology have not yet been established. In this paper, we examine the potential for

cognitive developmental robotics to further our understanding of both humans and machines. We hope

this stimulates many researchers | not simply in robotics but also in other disciplines | to discuss and

tackle this controversial new paradigm.

The key aspect of CDR is its design principle. Existing approaches often explicitly implement a

control structure in the robot's `brain' that was derived from a designer's understanding of the robot's

physics. According to CDR, the structure should re
ect the robot's own process of understanding through

interactions with the environment. Since both CDR and the traditional approach may lead to similar

results, CDR may seem unnecessary if we evaluate it merely in terms of task performance. However, we

believe CDR holds promise in the long-term both in terms of producing humanlike behavior and because

it can serve as a testbed for cognitive theories. Furthermore, more traditional approaches in AI and

engineering tend to break down in natural settings, where the robot's body and environment are diÆcult

to model and can change unpredictably [1, 2].

Brooks et al. [3] proposed the methodology for alternative essences of intelligence as a humanoid

design principle, which consists of parallel themes: development, social interaction, embodiment, and

integration. Any of these themes seems essential for CDR, and we share very similar concepts. But in

CDR we emphasize more fundamental issues of cognitive development and propose a more constructivist

approach.

Cognition and development have been key issues for human intelligence, and recent progress in these

disciplines promoted a new area called developmental cognitive neuroscience (DCN) [4], which emerged

at the interface between two of the most fundamental questions that challenge mankind. The �rst one

concerns the relation between mind and body, and especially between the physical substance of the brain

and the mental processes it supports (cognitive neuroscience). The second concerns the origin of organized

biological structure, such as the highly complex structure of the adult human brain (development).

Johnson claimed that we can cast light on these two questions by focusing on the relation between the

postnatal development of the human brain and the cognitive processes it supports.

The basic idea seems applicable to the approach of CDR since it has to deal with cognitive processes

during the development of a robot's brain. However, the di�erence between CDR and DCN is that CDR

is a synthetic or constructivist approach with the potential to test its models by implementing them in



humanoid robots. The cycle of fault diagnosis and reimplementation may iterate many times in order to

re�ne the model [5]. The idea is that this process of re�nement might result in a useful model of human

interaction.

Since brain science is primarily concerned with structural details of human brains at the microscopic

level, it may not be well suited to providing a comprehensive model of human activity and how brains

support it. Sometimes, however, the social sciences have attempted to understand human activities at

a purely macroscopic level | without concern for the biological structure of individuals (for example,

humans are sometimes treated as black boxes). By providing a means of scrutinizing and testing models

and �nding alternatives, CDR can help bridge macroscopic and microscopic approaches. We expect that,

through the process of designing and implementing humanoid robots, a new way of understanding human

beings will develop that di�ers signi�cantly from the ways in which humans are understood in the natural

and social sciences. In addition, we believe that robots that can emerge symbols through social interaction

will have the best chance of one day approaching human capacity.

We already mentioned one side of the design principle of CDR: the design of a self-developing structure

inside the robot's brain. But if we consider human beings and other intelligent species, we �nd another

side to this story. Individuals cannot reach their full potential without nurturing relationships. Parents,

teachers, and other adults adapt themselves to the needs of children according to each child's level of

maturity and the particular relationship they have developed with that child [6]. So the other side of

CDR's design principle concerns environmental design: how to set up the environment so that the robots

embedded therein can gradually adapt themselves to more complex tasks in more dynamic situations. It

may include instruction from a human or robot. Fig.1 shows a typical method of designing the embedded

structure and the environment.

The rest of this article is organized as follows: First, we review the view that embodiment is the

least requirement for cognitive development. Then we explain the design principles and the approaches

of CDR. Finally, we discuss future directions for CDR.

2 Physical Embodiment and Interactions

Owing in part to the in
uence of a series of papers by Brooks (cf., [7, 8]), arti�cial intelligence researchers

now consider physical embodiment to be necessary for designing the structure of intelligent systems. A

physical body enables an agent to interact with its environment, which we may expect could lead to

the emergence of intelligent behavior and internal organization. Robotics researchers have never really

disputed the need to have a physical body because it is essential to their research. Therefore, few have

entered into a critical dialogue concerning the relationship between having a body and the emergence of

intelligence. Here, we review the signi�cance of embodiment [9].

1. Perception and action are not separable but tightly coupled.

2. Under resource-bounded conditions (memory, processing power, controller, etc.), an agent is able to

learn a sensorimotor mapping from experience (interactions with the environment).

3. As the complexity of its task or the environment increases, the agent is able to adapt itself to

these changes by learning from the consequences of its actions and adapting this knowledge to new

situations.

No one seems to have any objection to 1 and maybe 2. Pfeifer and Scheier explained \embodiment"

in a variety of contexts in their book [10] with reference to Brooks's de�nition [7]. However, they seem to

put more emphasis on physical coupling than cognitive and physical developmental processes. A typical

example is passive dynamic walking [11] by exploiting the system's dynamics. Here, we focus on cognitive

development by adding 2 and 3 since current technology does not really support the realization of a

growing, changing body.

3 Cognitive Science, Developmental Psychology, Neuroscience and

Cognitive Developmental Robotics

\Developmental Cognitive Neuroscience" [4] has emerged from cognitive science, developmental psychol-

ogy, and neuroscience partly owing to the recent progress of imaging technology in brain science. A

fundamental controversy in cognitive science concerns the relative importance of nature and nurture in



determining the structure and behavior of individuals. One extreme is that gene coding has all kinds of

information necessary for development. The other extreme is that much of the information involved in

the formation of a human mind comes from the environment. Both viewpoints are lacking. Neither the

nature nor the nurture side address how new information emerges, as Johnson pointed out. In the last

decade new evidence has revealed that complicated interactions between genes, developmental processes,

and the environment lead to the emergence of structural organization and behavior at many levels [12].

CDR aims at a constructivist approach to realizing a mechanism that can adapt to complicated and

dynamic changes in the environment based on its capacity for interaction.
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Fig. 1. Interaction between embedded structure and environment

4 The design principle of CDR

From the standpoint of engineering, there are two sides to the design principle of CDR: (1) how to design a

robot brain whose embedded structure can learn and develop; and (2) how to create a social environment

capable of supporting the development of cognitive processes.

4.1 Embedded structure.

The embedded structure is a mechanism inside the robot that eÆciently supports its interaction with

an environment. The information obtained through interaction will di�er qualitatively depending on the

size and organization of the robot's functional modules, which may range from the neural level to larger

units such as visual and motor subsystems. However, a common feature is that new information emerges

inside the robot. Reinforcement learning, which maps from sensory information to actuator outputs, is a

typical example of a functional module.

4.2 Environmental design issues.

The conventional robot design principle has put much more emphasis on the embedded structure than on

environmental issues, although the resulting behaviors seriously depend on both. Environmental design

issues are essential for a robot with embedded structure to learn and develop so that it can gradually

adapt itself to more complicated environments. Environmental design issues include all kinds of factors

that come from outside the robot. How other active agents respond is key to multi-agent learning, whether

they be cooperative (e.g., rescue activities in a disaster situation), competitive (a prey surrounded by

predator), or both (game situations such as RoboCup [13]). Furthermore, other agents can be coaches

or teachers who can communication with robots by various means. From the viewpoint of facilitating



a robot's development, learning from easy missions (LEM) [14], a learning schedule [9], or a gradual

increase in domain complexity [15] are typical approaches.

5 Approaches to CDR

Although a full scale implementation of a humanoid robot, built according to the principles of CDR,

currently stands beyond our reach, for the time being, we can focus on essential issues in CDR, keeping

the long-term goal in mind.

5.1 Development

Developmental issues have been examined within the reinforcement learning paradigm because rein-

forcement learning enables complex behavior to emerge through interaction without making many, often

untenable assumptions about the structure and initial state of the internal mechanisms of cognition. Yet

the 
exibility of reinforcement learning has also been its weakness; it results in a huge space of possi-

ble states and actions to explore. Only recently have researchers begun to develop powerful nonlinear

algorithms that may be able to generalize across that space eÆciently.

Guidance by starting with easy tasks Although human beings live long enough for the various stages

of cognitive development to unfold gradually [16], robots have not yet attained that level of reliability.

Robot shaping [17] or learning from easy missions (LEM) [14] provide typical and intuitive methods for

accelerating learning. In LEM the essential problem is how to de�ne easy missions. One solution is that

the robot starts close to the goal state in the state space and is gradually moved further from the goal

state as learning progresses. A distance measure is de�ned for the state space, and changes in the Q-values

are used to determine when to shift to more diÆcult situations.

Environmental complexity control Generally, the state space consists of multiple state axes, which

leaves the question of how to de�ne closeness to the goal state. This raises a more general issue. How

do we de�ne the complexity of the environment in terms of the developmental stage of the robot, and

how do we adjust the environment to meet the robot's changing developmental needs? While at �rst it

may seem that we are looking at the problem the wrong way around | adapting the task to the robot

rather than the robot to the task | this is in fact what parent's do naturally in �nding stimulating,

age-appropriate ways of interacting with their children. Asada et al. [9] de�ned the complexity of the

environment in terms of the relationship between self-induced motor commands and changes in sensory

input.

1. Self-induced movements in a static environment: The agent can directly correlate its motor

signals with changes its sensory input (e.g., observing hand movements, eye saccades to explore the

environment).

2. Passive agents: Depending on the actions of an agent or other agents, passive agents can be moving

or still. A ball is a typical example. As long as passive agents are stationary, they can be treated as

part of the static environment. But when they are in motion, there is no simple correlation between

an agent's motor signals and sensory projections from the passive agent.

3. Other active agents: Active agents do not have a simple and straightforward relationship with

self-induced movements. In the early stage, they may be treated as noise or disturbance because

they lack direct visual correlation with self-induced motor commands. Later, they can be found from

more complicated and higher order correlations (coordination, competition, etc.). The complexity is

drastically increased.

To enable a robot to behave intelligently, the complexity of its internal representation should mir-

ror that of the environment. The problem is how to map the environment's relevant structure. Uchibe

et al. [18] invented an algorithm to estimate which dimensions of the state vector best capture the en-

vironment's complexity, and they applied it to improving shooting behavior in a simpli�ed defender-

versus-shooter soccer game [15]. Fig. 2 shows how the dimensionality of the state vector grows with the

environment's complexity | in this example, speed of the defender. As long as the performance (success
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Fig. 2. Interaction between embedded structure and environment

rate) exceeds the threshold, we increase the complexity by increasing the speed. If the success rate drops

below the performance criterion, the robot increases the dimensionality of the state vector.

The environmental complexity control method resulted in performance that slightly exceeded that

of learning with a full state vector, and required only one third the time. The fact that both robot

and environment are physical systems limits the time a robot has to reach task competency through

experimentation. Therefore, starting small [12] can be important for bootstrapping learning mechanisms

by exposing the learner to the environment's most promentent features �rst. To some extent, we see this

in child language learning [19].

If a robot develops expectations concerning how self-induced movements transform sensory projec-

tions, passive agents can be detected and modeled from correlations among violated expectations [2]. In

this way, the robot develops second-order expectations that may sca�old ever more abstract learning in

a similar manner.

Learning schedules in multi-agent learning In the last example [15], there was only one learner,

and the behavior of the other agent (defender) was controlled according to the skill level of the learner.

What kind of control is possible if both agents are learners? In general, the simultaneous learning of action

policies from rewards in a multi-agent environment is diÆcult for a number of reasons: (1) Initially, the

agents' learning focuses more on exploring the state space than exploiting a policy; since exploration

depends on trying many unfruitful actions, the learning of both both robots may diverge as they try to

adapt to each other's largely random behavior. (2) Even when each robot converges to its locally optimal

policy, the robots may easily miss �nding policies that | taken together | would be globally optimal.

We introduced a learning schedule [9] to address the �rst problem: only one agent is allowed to learn.

The other agents have �xed policies until the learner's skill reaches a pre-speci�ed level. Then the next

agent begins learning. We applied a cooperative task in the context of RoboCup [13], namely, passing

and shooting. The learning schedule successfully resulted in mutual skill development, which is generally

diÆcult to reach in the case of co-evolution [20].

5.2 Social interaction and communication

One way that CDR could contribute to our understanding of human beings is by providing models of the

cognitive and social processes underlying the development of communication and to test those models

using humanoid robots. The transition from nonverbal to verbal communication is an active area of

research that CDR can address. There is a large gap between primate and human species that needs

to be �lled in (the missing link, cf. [21]). Since a survey of existing views in linguistics, philosophy, and



sociology would be too broad in scope for the purposes of this paper, we focus instead on the issue of

symbol emergence and language acquisition from a viewpoint of engineering design.

Over the last few decades language researchers seem to have reached a consensus that language is an

innate ability, and human babies are born with a kind of \language faculty" or device [22]. Broca and

Wernicke areas seem to be part of such device, but things are not so simple. All language abilities cannot

be reduced to the activities of those areas; in fact many areas are related to language use implicitly. Also,

given the biological continuity from primate to Homo sapiens, the claim that only human beings have a

language device seems diÆcult to accept. Without question, human brains come into the world especially

equipped for language. So the problems facing CDR are:

1. What kind of structure should be embedded inside a robot's brain?Whether the structure be explicitly

or implicitly speci�ed, it should involve a new explanation of how evolution and development bridge

the gap between nonverbal and verbal communication.

2. What analytical approaches should we use in CDR (e.g., structural/anatomical, behavioral, evolution-

ary)? and at what level of detail (e.g., gene and neuron or auditory subsystem)? These are important

questions since it is impractical to try to reproduce in robots millions of years of biological evolution

in all its detail.

Although current speech recognition and generation technology is useful in some contexts, it is doubtful

that most AI systems based on this technology really understand (see Searle's Chinese Room argument

[23]) or can apply language in context as a tool for communication [5]. This is a problem generally for

representations that cannot be related to sensorimotor activity [24]. In their book [12], Elman et al. showed

that simple grammars could be learned by arti�cial neural networks. However, the inputs and outputs

were just symbols without any semantics. We intend to start exploring how symbols emerge through

social interaction. Steels and Voget [25] implemented adaptive language games using robotic agents, and

their approach seems closer to ours, but they assumed a protocol for robots to communicate. Since CDR

aims to o�er at least a partial explanation of the transition from nonverbal to verbal communication, we

should focus on how such a protocol could evolve or be learned by humanoid robots.

Schaal [26] surveyed imitation learning methods, and emphasized the importance of imitation as the

route to developing humanoid robots. He focuses on eÆcient motor learning, the connection between

action and perception, and modular motor control in the form of movement primitives. He pointed

out open problems such as learning perceptual representations and movement primitives, movement

recognition through movement generation, and understanding task goals. Schall then discusses the recent

�nding that some neurons called \mirror neuron" were active both when the monkey grasps or manipulates

objects and when it observes the experimenter making similar actions. Rizzolatti and Arbib [27] speculated

that the ability of imitate actions and to understand them could have subserved the development of

communication skills based on the fact that a similar system includes the Broca area (known to be

related to speech generation) in human brain.

>From the viewpoint of CDR as a humanoid robot design principle, such a system should be included

because capabilities of both motion generation by imitation and motion understanding (e.g., by com-

parison to one's own motion repertoire) seem necessary. There seems to be two main kinds of imitation

pathways: visual imitation (imitative learning by observation) and auditory imitation (imitative learning

by listening).

The existing methods (ex. [28, 29, 30]) for the former often assume the global coordinate transfor-

mation from a god's eye viewpoint; however, CDR should focus on how such a transformation emerges

through the interactions between humanoid robots and/or humans (e.g., in a manner similar to how a

baby learns from its parents). Asada et al. [31] proposed an imitation system which recovers the other

agent's view without any knowledge of a global coordinate transformation but assuming that the oth-

er agent has the same body structure (see Fig 3). They expect to o�er a route to motion generation,

understanding, and \mind reading" (the theory of mind [32], [33]).

Since the mechanical structure of the human speech generation system is quite complex and a so-

phisticated integration of voluntary and involuntary muscle controls is necessary to generate sounds [21],

auditory imitation has an essential problem: At which level should the robot start to imitate? Imitation

extends beyond mere mimicry to the ability to generate something new.
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6 Conclusion

We have discussed a variety of issues concerning CDR, most of which are far from resolution since CDR

has just started. Among them, two issues seem essential for future arguments. The �rst one concerns the

de�nition of environmental complexity, the adjustment of which can be expected to aid development.

However, the de�nition itself involves a contradiction because before encountering a new environment

the robot cannot de�ne the complexity. In the method reviewed [15], the complexity corresponds to the

dimension of the estimated state vector, which is obtained in an o�-line process. But it seems diÆcult

to estimate the full dimensionality of the state vector accurately before learning. One alternative is to

develop an online method of state vector estimation.

The second issue is imitation in social interaction between the learner and teacher. There are several

levels of interactions, each of which has its own issues. If the teacher knows everything about the learner

like a god, the teacher can guide the learning process optimally. However, both learner and teacher must

realistically have only limited, perspective-dependent knowledge. A further issue concerns the kinds of

explicit or implicit means of communication available (e.g., visual, auditory) and the extent to which the

teacher knows the learner's state. Imitative learning seems essential to developing cognitive processes for

both motion generation and language acquisition.

The ultimate aim of CDR is both for us to know ourselves by building robots and to build robots

capable of functioning in society. Speci�cally, we want to build robots that can relate to people and each

other as individuals by developing speci�c relationships, just as people do. We believe that in the process

of building robotics that can function in society, we cannot help but learn about ourselves too.
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